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We present a numerical study of pattern formation in the asynchronous regime of a homeotropi-
cally aligned nematic liquid crystal under the influence of an in-plane continuously rotating magnetic
field. Experimentally, this system has been shown to produce several pattern-forming states. Here,
we test the hypothesis that these dynamic patterns exist due to a coupling between spatial gradients
in the nematic director and gradients in the fluid flow. We derive the equations of motion coupling
the director and hydrodynamic flow from the Leslie-Erickson equations and numerically integrate
them in the asynchronous regime. We show that there are two pathways by which a sample that is
initially in a homogeneous state can evolve into a dynamic pattern. The first path is through a large
external disturbance which nucleates pattern formation and the second is through the amplification
of thermal fluctuations, both of which are experimentally observed. We find that the fluid-flow
coupling is essential in order to reproduce the experimental behavior. Intuitively, the coupling of
the director with the flow creates a lower effective viscosity than in the absence of the flow.

PACS number(s): 61.30.Gd, 61.30.Eb, 47.20.—k

I. INTRODUCTION

A continuous dissipative medium driven away from
equilibrium by a uniform external field can respond in
a spatially nonuniform manner. Two well-known exam-
ples of such behavior are the hydrodynamic instabilities
in shear flow or in temperature gradients [1], and pat-
tern formation in a few reaction diffusion systems, such
as Belousov-Zhabotinskii [2]. In nematic liquid crys-
tals (NLC’s), there are unique experimental realizations
of pattern formation, due to the anisotropies of many
of its fundamental parameters: viscosities, elastic con-
stants, diamagnetic susceptibility, dielectic permittivity,
and conductivities [3].

A key ingredient in many of the liquid-crystal experi-
ments performed to date is the coupling of gradients in
fluid flow with gradients in the director field. The best-
known example is an electrohydrodynamic instability in
which a voltage V is applied between two plates sand-
wiching a NLC with planar alignment (director aligned
along a unique axis parallel to the plates) [4]. When
V > V., for suitable material parameter conditions, a
static periodic distortion of the director field is observed.
This distorted field is maintained in part by a convective
instability. Counter-rotating fluid rolls create a torque on
the director which distorts it. In turn, the distorted direc-
tor field, through an anisotropy in conduction, maintains
the flow field. More recently, this class of experiment has
been used to study transitions to spatiotemporal turbu-
lence through defect formation and propagation [5].

A second interesting experiment is the instability of the
director field of a homeotropically aligned NLC (director
perpendicular to the glass plates at the plate bound-
aries) to elliptical shear flow, discovered by Pieranski
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and Guyon [6]. They interpret their results as a posi-
tive feedback in which convective rolls distort the initial
director configuration; the distorted configuration creates
bulk forces that amplify the convection.

In the above two examples, the systems are driven con-
tinuously away from equilibrium by the externally ap-
plied fields. Another class of experiments is transient
patterns in a Fréedericksz transition. In a Fréedericksz
transition, the director is initially spatially homogeneous
with the director orientation defined by the surface align-
ment (homeotropic or planar). A field (electric or mag-
netic) is applied which, in the absence of the surface
alignment, would reorient the director by 7/2. There is a
competition between field and elastic free energy. Above
a threshold field value, the static equilibrium state is dis-
torted. The director is reoriented a finite amount in the
bulk of the sample while remaining anchored at the sur-
faces (strong anchoring limit).

The dynamics of the uniform in-plane Fréedericksz
transition were studied by Brochard, Pieranski, and
Guyon [7]. In the simplest case of a uniform in-plane
transition, the director rotation, and hence the director
angular velocity, is zero at the plate surfaces and a max-
imum in the mid-plane. By analyzing the Leslie-Erikson
equations, they realized that this effect gives rise to fluid
flow (except in the twist case) and furthermore, this flow
acts back on the director to create a reduced effective
viscosity. In these early papers, the backflow effect was
viewed as a substantial quantitative perturbation; the
dynamics was qualitatively not greatly changed except
for a rescaled viscosity parameter.

It was later discovered that flow can cause qualitatively
new physics. Carr found in-plane one-dimensional tran-
sient stripes upon suddenly applying a magnetic field in
a splay Fréedericksz transition [8]. Guyon, Meyer, and
Salan found that these results can be explained through
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a viscosity-reduction mechanism [9]. After linearizing the
equations of motion, they found that a transient spatially
periodic response involving counter-rotating rolls of flow
can produce a lower effective viscosity than a uniform
in-plane response. They found that the system chooses
a wavelength in order to maximize this response rate.
Transient effects in a Fréedericksz transition have since
been observed in many different geometries in both low-
molecular-weight and polymeric NLC’s. A summary of
these effects is given by Winkler et al. [10].

In a previous work by the present authors, we dis-
covered several pattern-forming states in a homeotrop-
ically aligned NLC in a rotating magnetic field [11]. By
continuously rotating the field, the NLC is maintained
away from equilibrium. That work therefore extended
the transient-response experiments mentioned above into
the domain of continuously driven systems. Through an
analysis of the observed director patterns, we concluded
that a viscosity-reduction mechanism is an essential com-
ponent of the pattern-forming states. Further, we hy-
pothesized that this viscosity reduction was a result of a
coupling of director gradients and fluid flow, in analogy
with the systems previously mentioned. One difficulty
of incorporating flow effects into the theoretical analysis
is that the distortions are large and the equations are
complicated and nonlinear.

In this work, we test the hypothesis that the coupling
between director gradients and fluid flow is the driving
force behind the pattern formation. Using reasonable
approximations, we derive the equations of motion cou-
pling the director and hydrodynamic flow from the Leslie-
Erickson equations and numerically integrate them in the
asynchronous regime. We show that there are two path-
ways in which a sample that is initially in a homogeneous
state can evolve into a dynamic pattern. The first path
is through a large external disturbance which nucleates
pattern formation; experimentally this is observed in the
pattern that we call the viscosity-reduction lattice. The
second is through the amplification of thermal fluctua-
tions; this amplification is observed to occur in the early
stages of what we call the complex state. Depending on
the values of the field strength and sample rotation rate,
both pathways to pattern formation are experimentally
observed.

The outline of this paper is the following: in Sec. II,
we describe the basic experiment, and review the theory
for the dynamics in which there is no pattern formation.
In Sec. ITI, the experimental pattern-forming states are
reviewed. In Sec. IV, we derive the equations of mo-
tion incorporating fluid flow based on certain physically
reasonable approximations. In Sec. V, we discuss the
viscosity-reduction lattice (VRL). A VRL is nucleated in
an initially homogeneous sample by a local disturbance
that creates a local increase in effective rotational vis-
cosity. Through fluid-coupling effects, a lattice is formed
that has a lower effective viscosity than the uniform in-
plane state. We present the numerical solutions of the
Leslie-Erikson equations which confirm the above pic-
ture. In Sec. VI, we discuss the amplification of ther-
mal fluctuations by the director-flow coupling and argue
that this is responsible for the complez state, in which an

initially homogeneous state becomes spontaneously dis-
ordered.

II. UNITFORM DYNAMIC STATES

The geometry of the experiment is a layer of NLC of
thickness d, contained between parallel glass plates at
which the director is homeotropically aligned (perpen-
dicular to the glass). The director 7 is described by the
usual polar angles (6, ). A homogeneous magnetic field
of strength H, parallel to the z-y plane, rotates with an-
gular frequency w about the z axis. (See Fig. 1.)

In order to understand the patterns that can form, we
must first understand the state that is homogeneous in
the z-y plane. Brochard, Léger, and Meyer (BLM) stud-
ied the case of a homeotropic nematic liquid crystal in
a rotating magnetic field [12,13]. There are three fun-
damental states called synchronous, asynchronous, and
undistorted which can be understood by considering the
relative strengths of the elastic, viscous, and magnetic
torques that act on the director.

Consider first the limiting case of w = 0. This is sim-
ply the static Fréedericksz transition discussed in the In-
troduction. The Fréedericksz transition occurs at field
strength (in cgs notation):

[k
He = H(w=0) = % X—”

in which K3 is the Frank elastic constant for bend, x.
the magnitude of the anisotropy of the diamagnetic sus-
ceptibility, and d the thickness of the sample. Note the
degeneracy of the director for H > H.y in that both
¢ = 0 and ¢ = 7 are allowed. Unless one orientation
is somehow suppressed, the sample typically forms into
random domains of opposite orientations separated by
walls.

(2.1)
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FIG. 1. The geometry of the experiment is a homeotropic
nematic-liquid-crystal sample between glass plates in the pres-
ence of an in-plane rotating magnetic field.
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Now we consider the torque equations for the direc-
tor in a rotating magnetic field in which the sample is
homogeneous in the z-y plane:

8¢ 1 2 .
= 2 — 2.2
12 = L sinf2(wt — 9] (2.2
00 o 820
Mg = XoH? cos®(wt — @) sinf cos 0 + K_322 ,  (2.3)

using the approximation K = K; = K3 in which K, is
the splay elastic constant, and ~; is the rotational viscos-
ity.

The magnetic coherence length

oL [Ks
T H\ Xa

defines a characteristic length over which the director
can vary. For fields just over the Fréedericksz transition,
l. = d, while for fields H > H.g, l. defines the width of
a boundary layer in which the director varies from 6 = 0
at the glass plates to 6 ~ /2 in the bulk.

For large H, fluid flow in the homogeneous structure
is confined to these boundary regions, subject of course
to the constraint that it vanish at z = +d/2. At high
fields these flow regions are much thinner than the sample
thickness and are expected to have little impact on the
bulk dynamics. The rotational viscosity used above, =y,
is rescaled by the fluid flow [13,14]. The direction of the
flow is perpendicular to the plane defined by (z,n). Fluid
flow becomes much more important in pattern-forming
regimes.

Note the basic reason for our use of homeotropic
boundary conditions: while the director in the mid-
region rotates about the z axis, the boundary layers in
which the director remains perpendicular to the glass act
as pivot or slip surfaces for the director.

The torque equations are simplified by the fact that
Eq. (2.2) is independent of #. Assuming that H(w) is
strong enough so that there is a Fréedericksz transition,
the synchronous regime is defined by the condition that

(2.4)

wT < 1, (2.5)
in which
27
T = HE (2.6)

7 is a characteristic time for the director to rotate in
response to the magnetic torque. Equation (2.2) is easily
solved in this regime and the solution is independent of
time when written in terms of a:
sin(2a) = wT, (2.7)
using
a=wt—¢. (2.8)

a is the phase-lag angle between H and the projection of
7 in the z-y plane, n, . (See Fig. 1.)
Thus in the synchronous regime, the director rotates
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at the same frequency as the field, but lags behind by a
constant phase angle a. Since « is constant in time in
the synchronous regime, 0 is also independent of time via
Eq. (2.3). The maximum constant phase-lag angle in the
synchronous regime is 7/4 at which point wr = 1 and
the magnetic torque about the z axis is a maximum.

The transition between the synchronous and asyn-
chronous regimes occurs at wr = 1 and H,(w) denotes
the corresponding magnetic-field strength. If wr > 1
and H > H.(w), then the asynchronous state appears.
In this state the rotational viscosity prevents the director
from synchronously following the rotation of the field and
the phase-lag angle « increases monotonically with time.
Also, 0 becomes time dependent. In the asynchronous
regime BLM found the behavior of a to be

(o)

X tan (E(wz‘r2 — 1)% + 4’0) .
T

tan a(t) = wl_T
(2.9)

The period T is defined as the time for a to increase by
m
T
T — (m. (2-10)

Throughout this paper, we will refer to both ¢ and «,
depending on which is more convenient. In Fig. 2, both
¢ and a are plotted as a function of time in the asyn-
chronous regime using Eq. (2.9) with wr = 1.2. Whereas
¢ is a linearly increasing function of time in the syn-
chronous regime, here it slows down and reverses direc-
tion in what we call the phase-slipping portion of the cy-
cle, i.e., when /4 < a < 3w/4. For the case of wr =~ 1.2
(Fig. 2), the mean slopes of o and ¢ versus time are ap-
proximately equal. This is not true in general; for exam-
ple in the limit of wT — oo, the mean value of 8¢/0t — 0
while that of dar/8t — w. This is because when wr — oo,
the magnetic-field rotation rate is much faster than the
nematic response rate; thus the director is essentially mo-
tionless as the field rotates.

The threshold field H.(w) for the Fréedericksz transi-
tion from the undistorted into the synchronous regime
can be found by noting that the situation is similar to
the stationary Fréedericksz transition except that H is
replaced by H cos a. This gives

2.5
2.0

1.0
05

angle (r rad)

-0.5

0 2.5 5.0 7.5 10.0 12.5
t/t

FIG. 2. Solution of Eq. (9), showing a comparison of the
behavior of ¢ and «a in the asynchronous regime for wr = 1.2
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2
H%(w) = HZ, (1 + ‘:—2) , (2.11)
1
in which
Kqn?
wy = 7fd2 (2.12)

defines a characteristic inverse time for 7 to relax to 6 =
0 in the absence of a magnetic field. When w > wq,
the Fréedericksz transition occurs into the asynchronous
regime at a field [14,15].

H. = V2H. (2.13)

For what range of external variables is the uniform (i.e.,
homogeneous in the z-y plane) response stable? Sagués
theoretically studied pattern formation associated with
the Fréedericksz transition in this geometry and found
that in the small-0 approximation, one expects a homo-
geneous in-plane response, in agreement with experiment
for low fields [14]. Also in two limits of w7, we can show
that pattern formation is not expected. First consider
the limit of wr — 0. This is the static Fréedericksz
transition limit, which was discussed previously. The
torque about the z direction, which is essential for pat-
tern formation, goes to zero. In the opposite extreme of
wT — 0o, the physical picture is that the rotation rate is
so great compared to the field strength, that ¢ becomes
constant in time (or equivalently that « is linearly in-
creasing in time). BLM make the analogy between the
wT — oo limit and an electric-field Fréedericksz transi-
tion with a negative dielectric anisotropy. Here, the time-
averaged torque in the z direction is zero. In these two
limits, the uniform description is valid. In the remainder
of the paper, we will focus on the case of wr greater than,
but close to 1, and pattern formation is observed.

III. EXPERIMENTAL PATTERN-FORMING
STATES

Migler and Meyer studied the case in which the di-
rector is spatially nonuniform in the plane of the sample
and dynamic pattern formation is observed [11]. Figure 3
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FIG. 3. Experimental pattern-forming-state diagram. The
solid line delineates the synchronous-asynchronous transition.

shows the experimentally determined pattern-forming
states for a sample thickness of d = 75 um. The dia-
gram is in the limit H? > HZ%, and w > w;. Therefore
the triple point, where the synchronous, asynchronous,
and undistorted states coincide, is located in the very
lower left portion of the figure (not shown). Also the
undistorted state is not explicitly shown because it runs
along the very bottom of this figure. The term uniform
is defined to describe the dynamics of the state in which
the director is uniform in the z-y plane, while varying
in the z direction. This experimental state diagram sup-
ports the earlier statements that a uniform response is
stable in the limits of large and small w7 and also in the
limit of H only slightly greater than H,.(w).

In the synchronous regime, dynamic solitons, also
called walls or kinks, were observed. A soliton is a wall-
like structure that separates two regions of space differing
in the angle of the director by 7. The director smoothly
varies from ag on one side to ag =7 on the other. An iso-
lated soliton conserves its shape as it propagates through
the sample (neglecting line tension effects). In an initially
homogeneous sample, a dynamic soliton can nucleate off
of either a dust particle (in which case it propagates out-
ward in a growing ring), or the outer side boundary of
the sample, in which case it moves inwards in a shrink-
ing ring. In view of the one-dimensional work that we
will present later, we focus on the case of a straight
(one-dimensional) outer boundary. In order to under-
stand the stability and propagation of these structures,
Eq. (2.2) was generalized to include the elastic torque
term K82« /8z?%, which describes in-plane spatial nonuni-
formity in the director field [11]. (This can be further
generalized to two dimensions.) This equation has been
studied previously [16], and its solution contains stable
propagating solitons of amplitude = which are very sim-
ilar to those observed experimentally.

Physically, nucleation by an outer side boundary oc-
curs because the nucleation site acts locally as a region of
enhanced viscosity, inhibiting the rotation of the director.
The angle a between the director and the magnetic field
increases near this disturbance relative to the bulk of the
sample, creating an elastic distortion. Nucleation occurs
when this distortion becomes too great; the director at
the disturbance phase slips relative to the magnetic field
by m, creating a soliton of amplitude 7. As this soliton
propagates away, the disturbance can nucleate another,
and so on, leading to the formation of what we call a lat-
tice of solitons. At a given point in time, « is a decreasing
function of distance from the sidewall. The average rota-
tion rate within a dynamic soliton lattice is slower than
it is in a homogeneous (soliton-free) part of the sample
because the net effect of a soliton passing through a point
in space is that the director falls behind the rotating field
by an amount .

In the asynchronous regime, the motion of the direc-
tor even in the absence of pattern formation is rather
nontrivial. Thus the challenge of describing and under-
standing pattern formation in this regime is great. Figure
3 shows four observed states in the asynchronous regime
as a function of H and w: the uniform, the viscosity-
reduction lattice (VRL), the VRL transverse instability,
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and the complez states. The three pattern-forming states
are classified by two criteria: First, the mechanism by
which an initially homogeneous sample evolves into the
final dynamic state and second, the observed final dy-
namic pattern of the director.

The experimental procedure that was used to study
the mechanism by which an initially homogeneous sam-
ple evolves into a pattern is the following: The sample
was initially placed into the magnetic field of strength
H, in the absence of rotation, in such a way as to in-
duce a uniform Fréedericksz transition. In other words,
we create a single-domain sample (no walls) in which the
director angle is independent of z and y, depending on
z in the usual way for a Fréedericksz transition. Then
the rotation is quickly turned on, and one observes if
and how pattern formation in the z-y plane evolves from
the homogeneous sample. We have observed two distinct
paths: nucleation-induced pattern formation and spon-
taneous pattern formation.

We begin the discussion of asynchronous patterns by
describing a nucleated pattern: the VRL. Given an ini-
tially homogeneous sample and setting H and w within
the VRL part of the state diagram (Fig. 3), one observes a
dynamic pattern-forming structure nucleating off of dust
particles and the outer-side boundaries. Figure 4 shows
a photograph of a VRL that has nucleated off of a side-
wall. These structures grow into, and at the expense of,
the homogeneous parts of the sample, until they fill the
entire sample. An important point is that when H and
w are in the VRL part of the state diagram, an initially
homogeneous region of the sample is metastable, rather
than unstable, with respect to a VRL. For example, in
the case of a dust-particle-nucleated VRL, it is sometimes
observed that the center of the VRL slowly drifts away
from the dust particle, without affecting the dynamics
of the VRL. Thus the dust particle is necessary to ini-
tiate pattern formation, but once a pattern is formed,
the nucleation site plays little role in the subsequent dy-
namics. (Note that this is in complete contrast to the
dynamic soliton lattice discussed previously in which the
external disturbance plays a crucial role in creating each
individual soliton.) In the VRL part of the state dia-

0.5 mm

FIG. 4. Photograph of a VRL that has been nucleated from
a sidewall and is growing into an initially homogeneous sam-
ple. The nematic liquid crystal is birefringent and the sample
is sandwiched between crossed polarizers. Thus the intensity
of transmitted light gives information about the local orien-
tation of the director.

gram, small-scale distortions in an initially homogeneous
sample increase the elastic energy and are damped out
by the counteracting elastic torque. However, when a
distortion reaches a critical size, it grows.

The most important property of a VRL, in terms of
understanding its dynamics, is that the average rotation
rate of the director within a VRL is faster than the av-
erage rotation rate within a homogeneous part of the
sample. Equivalently, a is an increasing function of dis-
tance from the sidewall (in the case that the sidewall is
the nucleation source). This is opposite to the dynamic
solitons in which « is a decreasing function of distance
from the nucleation source. It was this observation that
led to the conclusion that there is an apparent reduction
in the viscosity in a VRL relative to a homogeneous part
of the sample. What is the source of this reduction in ap-
parent viscosity? In analogy with some of the previous
experiments in liquid-crystal dynamics, we hypothesized
that there is a coupling between director gradients and
fluid flow.

The VRL has other interesting dynamic properties.
Since the photograph in Fig. 4 is taken through crossed
polarizers, the angle o increases by 7 in the distance
between every other black stripe. We call this distance
the local wavelength. As the magnetic field rotates, the
local structure of the VRL undergoes a rather complex
undulation. A second photograph taken when the field
has rotated by (say) 7/4 would show a similar structure,
but on closer examination would reveal that the various
widths of the bright and dark regions that make up a
wavelength have changed, although the wavelength itself
remains unchanged. The frequency of this undulation is
w, thus a third photograph of the structure taken after
the field has rotated one full turn would show a pat-
tern identical to the first but shifted, showing that it has
grown slightly into the homogeneous part of the sample.

Nucleation of a viscosity-reduction lattice by a dust
particle or outer sidewall, which locally increases viscous
drag, sounds like a contradiction. However, our picture of
the nucleation process is the following: A sidewall creates
a region of increased viscous drag, causing the director to
locally rotate more slowly than in the bulk. This results
in a distortion in the director field, since « is greater
near the nucleation source than in the bulk. Fluid flow is
induced by the director gradients. Gradients in the fluid
flow then act back on the director, in such a way as to
increase the average rotation rate. In the mature VRL,
gradients in fluid flow and in the director couple to each
other in such a way as to reduce the effective viscosity.
The major purpose of the numerical simulations in the
remaining sections is to test whether this idea is correct.

The dependence of the wavelength of the VRL on H
and w shows interesting features. As the experimental
conditions are moved closer to the uniform state by de-
creasing H, there is a dramatic increase in the wave-
length, diverging at the transition between the two states.
At the same time, the rate of growth of the lattice slows
down dramatically. It seems that the viscosity-reduction
effect is much weaker at the boundary between the VRL
and uniform states than at the boundary between the
VRL and VRL transverse instability states.
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The VRL transverse instability state is similar to the
VRL just described in that the nucleation process is sim-
ilar. However, the appearance of the final dynamic pat-
tern is different in that there is a small amplitude distor-
tion with the wave vector in the direction parallel to the
stripes [11]. We shall not pursue this state further as the
patterns are inherently two dimensional, while the nu-
merical results that we present are only one dimensional.

In contrast to the VRL and to the VRL transverse
instability, in the complex region of the state diagram,
an initially homogeneous sample is unstable. By this
we mean that turning on the rotation of the magnetic
field causes spontaneous pattern formation throughout
the sample, without the need for nucleation at dust par-
ticles or side boundaries. Experimentally, the following
sequence is observed: In the first period of the homoge-
neous cycle when a,, begins to phase slip at a,, =~ 7/4,
stripes perpendicular to the director spontaneously grow
throughout the sample, reach a maximum amplitude, and
begin to disappear when a,, ~ 37/4. [The quantity aay
refers to the spatial average of o(x) at a given time.]
The orientation of the stripes is roughly constant during
the above cycle. During the next phase-slip cycle of the
director, stripes reappear in a similar manner, but the
orientation is different than the previous cycle because
the director in general will have a different orientation
when the next phase slip occurs. However, one can opti-
cally detect some memory of the initial stripes. Thus the
stripes from one cycle interact with those from the pre-
vious cycle. After a few such cycles, the system becomes
increasingly disordered, and large-scale (> =) inhomo-
geneities in the director begin to appear.

As time evolves, the pattern gradually becomes orga-
nized into a disordered array of local concentric circle
patterns, very similar to VRL’s nucleated by dust par-
ticles. Even this pattern is somewhat transient. A dy-
namic soliton lattice of much shorter wavelength than the
VRL (similar to that seen in the synchronous regime) still
nucleates from the sidewall. It competes with the com-
plex state, and at very long times, depending on the exact
position in the state diagram, it becomes the dominant
pattern. We will not discuss this dynamic soliton lattice
structure further in this paper. Note also that VRL-type
structures are not nucleated from dust particles or the
outer sidewall in the complex region of the state diagram.
Presumably this nucleation process has been superseded
by the homogeneous instability producing the complex
state.

In our study of the complex state, we will focus on the
initial appearance of the transient stripes, as they are ap-
proximately one-dimensional and hence may be studied
in a one dimensional simulation. In fact, these transient
stripes are also observed in a homogeneous portion of
a sample in which H and w are set to be within the
VRL or VRL transverse instability states. Here, how-
ever, the amplitude of the stripes remains quite small
and the stripes have little or no effect on the dynamics
of a VRL. Between phase-slip cycles, they die out, im-
plying that this homogeneous state is stable against these
small perturbations. As one moves the experimental con-
ditions closer to the complex state (say by increasing H),

the amplitude of the stripes in a homogeneous part of
the sample begins to grow. Finally, when one crosses the
boundary into the compler state, the stripes are large
enough to create pattern formation with large-scale in-
homogeneities.

We proposed that these stripes are an amplification of
thermal fluctuations and that the mechanism is again a
coupling between fluid flow and director gradients. Ap-
parently, only for w7 greater than but close to 1 are these
stripes able to grow significantly. In our numerical work,
we will examine both the flow fields and the director fields
to check that the proposed coupling can also be applied
to the case of transient stripes.

IV. HYDRODYNAMIC EQUATIONS

In order to test the idea of pattern formation induced
by a coupling between director gradients and fluid flow,
we examine the equations of motion for the nematic fluid.
We use the Leslie-Erickson equations [4] which contain
the coupling that interests us. As these equations are
quite complicated, we immediately make physically rea-
sonable approximations in order to eliminate some terms.

In this approach we take the limit H'2 > 1 and w’ > 1,
introducing two dimensionless variables;

H' = H/(H.02?) (4.1)

and

v =w/w;. (4.2)
This is a reasonable limit since Fig. 3 shows that the com-
plex state is in this limit and the VRL state approaches
it. Large H'? and large w’ means that the large-angle ap-
proximation 6 = w/2 must be used. This is the opposite
limit to that used by Sagués [14].

Also, we simplify things by considering one-
dimensional pattern formation. Figure 4 shows that this
is reasonable. In fact if the outer boundary of this sam-
ple were straight, instead of circular, the lines of constant
director angle would appear even straighter. We will con-
sider director gradients along the z axis only (perpendic-
ular to the stripes), which couple to fluid flow that is in
the y direction (parallel to the stripes). Gradients in the
fluid flow are considered in both the z and z directions.
There is an important finite-thickness effect associated
with the fact that fluid flow goes to 0 at z = +d/2. Flow
generated along a line, say * = z,, decays in a charac-
teristic spatial length dx ~ d. In order to incorporate
this effect, we make a parabolic approximation for the z
dependence of the flow field:

vi (@, 2,t) = vyo(a, t) {1 - (%2)2] .

We also neglect the variation of 8 at the sample bound-
aries and any variation of ¢ with 2. We use the one-
constant approximation K = K; = Kj3. These approxi-
mations are similar to those in previous works on tran-

(4.3)
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sient dynamics [10].

There are two fundamental variables w7 and d, which
can be expressed in terms of the more experimentally
relevant variables H' and w':

H' = g (4.4)
and
d?wr
W= 5 (4.5)

where d' = d/(1.2'/?) is a dimensionless thickness.
The general expression for the viscous contribution to
the torque equation is given by

', =nghy —nyhg, (4.6)

in which h, is the viscous contribution to the molecular

field:

hy = 1Ny + y2anaAay, (4.7)

and

1
Asp = —é(aavg + 8ﬁva) (4.8)
is the symmetric part of the velocity gradient tensor. N;
is the rate of change of the director with respect to the
fluid. The viscosity 7y, is associated with shear flow and

J

2
0= (aa:£0> [7e + 72 5in” ¢ + a1 (sin  cos §)%] + (
¢ 9¢

2
+ (%) (a2 cos? ¢ — agsin? ¢) — (8_1: ot

The a; terms are the Leslie viscosity coefficients. The
7; terms are linear combinations of the «; expressing ef-
fective viscosities in simple shear geometries [4]. Equa-
tion (4.3) is used in the last term to evaluate the deriva-
tive. In the limit ¢ <« 1, the above equation reduces to
that found by Lonberg et al. in the linearized treatment
of the twist Fréedericksz transition [17].

The boundary conditions are 9,¢ = 0 and vy = 0 at
the left and right ends. The initial conditions at ¢! are
vi(z,t,) = 0 and ¢(z,t],) depends on which pattern-
forming state we are examining. Since we are interested
in long-time dynamics, the initial vy is not critical; it
quickly adjusts into a dynamic nonhomogeneous value.
Equations (4.9) and (4.12) were solved through numeri-
cal integration on a grid using a method similar to Srajer,
Fraden, and Meyer [18]. First the equations are cast in
a dimensionless form. The additional dimensionless vari-
ables needed are 2’/ = z/(v/2l.), and vy = v/ (V20.w).
Equation (4.9) is solved using a forward finite difference
method and Eq. (4.12) is solved using Gauss quadrature
[19,20]. The equations are iterated at each time step until
they converge.

8’Uf0 %

) 2 sin(2¢) + ( - ) (1 cos® ¢ + my sin® @).

is a negative quantity. Using the above approximations
the resulting full torque equation is the generalization
of Eq. (2.2) with the inclusion of an elastic term due to
director gradients and a 9,vy term due to coupling with
flow gradients:

o6 0% 1
P _kZ% 2.
Mgy 922 T 2X
_Ovy
€T

H?sin[2(wt — ¢)]

(a2 cos® ¢ — azsin? ¢). (4.9)
For the hydrodynamic flow equation, we neglect the
inertial term, as is commonly done, because its contribu-
tion is negligible:
d
pP—Vf3 = 0a0ap =0, (4.10)
dt
in which o, is the general stress tensor. Using the sym-
metries of our geometry, many terms of the above equa-
tion do not contribute. For example, terms involving

pressure gradients are absent since this system is invari-
ant in the y direction. We can use the simpler expression

Balp =0, (4.11)

where J’aﬁ is called the viscous stress and is defined in
the standard manner [4]. From the previous equation
and our approximations we derive

O 8w) [v2 sin(2¢) + %al sin(4¢)]

8%v;

(4.12)

Since detailed viscosity coeflicients are not available for
the NLC used by Migler and Meyer [11], the coefficients
of 5¢b found in the literature were used [21]. Hence, the
comparison with experiment will be qualitative in nature.

V. VISCOSITY-REDUCTION LATTICE

We first attempt to simulate a VRL by using Egs. (4.9)
and (4.12) in the asynchronous regime in the presence of
a disturbance that causes a local increase in viscosity. We
find that near the disturbance there is a local increase in
phase lag. This local nonhomogeneity in the director field
gives rise to fluid flow. Further away, the fluid coupling is
such that it creates a region of decreased effective viscos-
ity so that there is a decreased phase lag relative to the
homogeneous region. The ensuing dynamics is similar to
the experimental observations given in Sec. III.

Figures 5 and 6 are results of a typical numerical sim-
ulation. In this case, the initial condition is a large-
amplitude Gaussian peak of height = and width =’ = 10.
Similar results are obtained when « is initially homoge-
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FIG. 5. Nucleation and growth of the viscosity-reduction
lattice in the asynchronous regime, for wr = 1.8 and
(H')? = 110. The initial condition (bottom plot) is a Gaus-
sian function centered at the origin of height m. The homo-
geneous region is the flat part of the curves towards the right
and the VRL is the growing disturbance on the left side. The
value of « is greater in the homogeneous regime than in the
VRL.

neous and there is a step-function increase in w7 in a
narrow region near the origin. The reason for the Gaus-
sian initial condition is that one can study the patterns
as a function of wr without worrying about the details
of the disturbance. The only important piece of infor-
mation we need to know about the disturbance is that
at t{ , it has created a local phase lag in the form of a
Gaussian bump.

In Fig. 5, the time between plotted curves is long;
At' = 18w, corresponding to 18 rotations of the field.
The bottom plot shows the Gaussian initial condition.
In the second plot, the nucleation of the VRL is evident
to the right of the disturbance. In the next two plots, the
VRL continues to grow, expanding into the initially ho-
mogeneous region. The homogeneous region (section of
the curve toward the right which is relatively flat) has an
increased phase-lag angle relative to the VRL, in agree-
ment with experiment.

Figure 6 shows the dynamics within just two rotations

| 4
©
o 4
gl
f‘(: ©
8 ‘
3
| .
w
0 100 200 300 400

X’
FIG. 6. Continuation of Fig. 5 but the time between plots

is reduced, At' = w/5. The bottom plot corresponds to time
t' = 72x.

of the field. Note that the behavior of a(z’,t') is quite
intricate. Roughly speaking, during one portion of the
rotation, there are sharp wall-like structures propagating
to the left. These are analogous to the dynamic solitons
in the synchronous regime. In the other portion, the
regions between the wall-like structures phase slip. Note
that the overall shape of the structure is temporally peri-
odic with the same frequency as the field rotation. Also,
the lattice-homogeneous border has shifted over to the
right, showing the growth of the lattice. These observa-
tions are in agreement with experiment.

Two basic properties of the lattice are its average wave-
length A’ and the relative increase in its period relative
to a homogeneous region,

T, —T

T
o T,

(5.1)

i.e., the time for o in a VRL to increase by 7, over that of
a homogeneous region. These two quantities were mea-
sured in a growing lattice and so do not necessarily rep-
resent steady-state dynamic values. They are plotted as
a function of H' with w’ held constant. (See Fig. 7.)
As H' decreases, the wavelength increases strongly and
6T — 0 near the VRL-uniform transition, in qualitative
agreement with the experimental findings [11]. The uni-
form regime corresponds to values of H' below this point,
for which pattern formation is not observed. By search-
ing for the point at which 67" — 0 as a function of W/,
we can map out the VRL-uniform transition of the state
diagram. This is shown in Fig. 8, and it is also in qual-
itative agreement with the experimental findings shown
in Fig. 3.

In the above numerical integrations, we used as an ini-
tial condition a Gaussian bump of large amplitude. We
note that for a given H’' and w’, as the amplitude of the
initial Gaussian function is decreased, one hits a point at
which the VRL does not form and the director remains
homogeneous. This is consistent with the experimen-
tal finding that a finite-sized disturbance is required to
nucleate a VRL. All these results are dependent on the
fluid-flow coupling. If this coupling is ignored, then an

0.25
1120
020 F 4110
iow~ 4100
= 490
T 010} 180
= 4 70
0.05 F 4 60
-4 50

O 1 1 1 1 1 1
9.0 95 10.0 105 11.0 115 12.0 12.5
H = (200 / wr)*

FIG. 7. Plot of the wavelength and period enhancement of
the viscosity-reduction lattice, determined by numerical inte-
gration. At the right end, the wavelength seems to diverge.
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FIG. 8. Plot of the numerically determined transition be-
tween the VRL state (above the dotted line) and the uniform
state. For reference, the synchronous-asynchronous transition
is shown (solid line). Compare this to Fig. 3.

initial Gaussian bump will not produce any of the above
dynamics.

Thus we have shown several common features between
the experimentally observed structures and those found
numerically, suggesting that our model is correct. First is
the fact that a growing dynamic structure is observed at
all, with the property that « is an increasing function of
distance from the nucleation point, a basic indication of
viscosity reduction. Second is that the wavelength seems
to diverge, along with a decrease in the magnitude of
viscosity reduction, when the magnetic field is reduced
towards the uniform state. Third, there is a complex
time-dependent undulation of the local structure within
the VRL, with period w.

VI. AMPLIFIED THERMAL FLUCTUATIONS

In the complex part of the state diagram, an initially
homogeneous sample will spontaneously become disor-
dered. In this section, we will provide strong evidence
that amplification of thermal fluctuations is the driving
mechanism for the transition to this state. The amplifi-
cation is caused by a director-fluid coupling. The com-
plex state is an inherently two- (or three-) dimensional
pattern. However, we can study the initial appearance
of stripes during the first cycle of the director using our
one-dimensional formalism.

The first question to address is the direction of the
stripes. Experimentally, the system is free to select a di-
rection for the stripes, while in the simulation, the wave
vector is fixed along the z axis. From Eq. (4.9), we see
that torque induced by flow gradients is largest when
¢av = 0. From the above description of the stripes, we
see that they are amplified when 7/4 < a,, < 37/4.
Thus it is reasonable to fix the initial conditions so that
at the time of the cycle when ¢,, = 0 we have a,, = 7/2.
The initial conditions are produced by the following pro-
cedure. First, o is initially set to 7/4 because we find
numerically that near this value thermal fluctuations be-
gin to be amplified. Next for a given wr, using Eq. (2.9),

0.2508

o (mrad)
0.2504

0.2502

FIG. 9. Numerically generated thermal fluctuation.

we choose a starting time t{ so that neglecting the ther-
mal fluctuations, we will have ¢ = 0 when a = 7/2. At
this moment, the stripe wave vector will be parallel to
the director. We add a random thermal fluctuation in
a to the initial condition, shown in Fig. 9. The method
used to generate the thermal fluctuation is well known
and similar to that used by Srajer, Fraden, and Meyer
[18].

Figure 10 shows the amplification and subsequent de-
cay of a thermal fluctuation during the phase-slip por-
tion of a single director cycle. One can clearly see the
amplification of the fluctuation. We show only one cycle
because, as discussed previously, the wave vector describ-
ing the next cycle of amplified thermal fluctuations has a
different orientation, and the one-dimensional equations
are not sufficient to describe this.

The maximum amplitude occurs for a,, =~ 37/4. In
Fig. 11 we plot the maximum root-mean-square fluctua-
tion as a function of wr for different values of w’. As wr
decreases, the magnitude of the fluctuations increases.
This result is consistent with the experimental finding
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FIG. 10. Amplification of thermal fluctuations of Fig. 9
over a portion of the director cycle, for wr = 1.2, (H')? = 90.
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FIG. 11. The maximum rms amplitude for an amplified
thermal fluctuation.

that for a given w’, the compler state occurs upon de-
creasing w7, and with the observation that the ampli-
tude of the stripes increases with decreasing wr. We can
estimate the size of the experimental fluctuations in the
experiment as follows: since the contrast of the stripes
is clearly visible between crossed polarizers, the order of
magnitude of the peak-to-peak fluctuation is w/8. This
is clearly in the range of the fluctuations seen in Fig. 11.
However, there is no clear signal of when the amplified
fluctuations would be strong enough to create the large-
scale distortions seen in the compler state, as opposed
to the transient stripes which appear in the VRL and
VRL transverse instability that remain small. We did
not probe in detail the jump that occurs in each plot
for the smallest value of wr since the experiments indi-
cate that the complex-state can occur for much larger
values of wr. We believe that the compler-state insta-
bility depends on subsequent cycles of the director and
two-dimensional effects.
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VII. CONCLUSION

In conclusion, we have explored by numerical studies
how patterns develop from a sample that is initially ho-
mogeneous. The simulations confirm the experimental
results that patterns may arise through either the amplifi-
cation of thermal noise (complex state) or heterogeneous
nucleations (VRL state). The pattern-forming states in
the asynchronous regime share the feature that an inho-
mogeneous director pattern with fluid flow has a lower
effective viscosity than a uniform director field and can
respond more quickly to the driving magnetic field. We
believe this is the important ingredient in understanding
these states.

Now that we have confirmed that a set of one-
dimensional equations of motion for the complex director
and velocity fields reproduces the basic (one-dimensional)
features of the asynchronous regime, one can attempt
to arrive at a more analytical and more intuitive un-
derstanding of those features. We would like to under-
stand the wavelength of the structures that appear, and
why the VRL state grows by nucleation, while the com-
plex state forms homogeneously by amplification of fluc-
tuations. Beyond the one-dimensional model there are
clearly many more unresolved questions.
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FIG. 4. Photograph of a VRL that has been nucleated from
a sidewall and is growing into an initially homogeneous sam-
ple. The nematic liquid crystal is birefringent and the sample
is sandwiched between crossed polarizers. Thus the intensity
of transmitted light gives information about the local orien-
tation of the director.



